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 Software 
  

    A number of proficient solutions that appear in science and engineering entail advanced objects or 

methods. 

 

    Often the "pen_on_paper" solution is simple, elegant and powerful. 

 

    However, implementing it in the computer can mean hundreds (more often thousands) of highly 

skilled man hours. 

 

    Example: a polymorphic C++ class for complex numbers has 500+ afferent operator 

instantiations for operators in all combinations. Yet, these must be outside of class, for it to retain 

memory allocation speed, must have move semantix implemented (even without a resource), etc.  

 

    My work in this direction has been that of fielding software for science and engineering to reach 

"pen_on_paper" capability in working with computers. 

 

    We do want very much those math objects because of their high power and do not want to go back 

to programming bit by bit. 

 

    Example: solution to dispersive wave-equation with SU(2) scalars (see attached). Note (in blue) 

the simplicity of transcribing the propagator. 

 

    Illustratively, the SU2 class has over 1100 operator instantiations, allowing it the polymorphic 

flexibility needed: 

 

 

    With this capability, more advanced solutions can be built, like this show-case: non-abelian Weyl-

Wigner FFT (see attached). 
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Description 
 
    The code represents an application of the SU2 suite for SU(2) spinors.  
 
    One showcase application is the solution to the transmission-line equation: 
 
 
 
 
 
 
 
 
 
    We will take the second embodiment of the solution, as the more physical of the two and 
implement it as a propagator. 
 
We will add a few harmonics and let them propagate. The code computes both the voltage 
and the current. 
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//  code    : test SU2 package 
// 
//  author  : M. Dima 
//            Inst. for Nuclear Phys. & Engr. 
// 
//  date    : NXV4            / Sat Dec  3 17:13:57 CET 2016 
// 
//*********************************************************** 
// 
#include <cmath> 
#include <string> 
#include <stdio.h> 
#include <iostream> 
#include <iomanip> 
 
#include "cpx.hh" 
#include "su2.hh" 
#include "psi.hh" 
 
using namespace std                                         ; 
using namespace cpx4                                        ; 
using namespace su24                                        ; 
using namespace psi4                                        ; 
 
 using dblx =      double                                   ; 
 using real = long double                                   ; 
 
 real     pi = 3.14159265358979323846264L                   ; 
 real     e  = 2.71828182845904523536028L                   ; 
 
 real    Ld  = 100.0                                        ; 
 real    c   =   3.0E8 * 0.65                               ; 
 
 auto j  = cpx<real>(0,1)                                   ; 
 
 auto sx = su2<cpx<real>>(0,  1, 
                         1,  0)                             ; 
 auto sy = su2<cpx<real>>(0, -j, 
                          j,  0)                            ; 
 auto sz = su2<cpx<real>>(1,  0, 
                          0, -1)                            ; 
 
auto propagator(real x, real t, real f) 
 { 
  real gamma = sqrt(1+f*f*Ld*Ld/c/c)                        ; 
  real beta  = sqrt(gamma*gamma-1) / gamma                  ; 
 
  return e^(-(1+sx*beta)*(j*sy)*(x-beta*c*t)*gamma*gamma/Ld);} 
 
 
 
 
 
 
 
 



int main() 
{ 
 
 int  N = 10000                                             ; 
 real L = 10000                                             ; 
 real f =     8.0e6                                         ; 
 real V, I, x                                               ; 
 
 for (int i=0; i<N; i++) { 
   x = i * L/N                                              ; 
   V = real ( 
       (psi<real>(1,0) | propagator(x,0,0.90*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,0.92*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,0.94*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,0.96*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,0.98*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,1.00*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,1.02*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,1.04*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,1.06*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,1.08*f) | psi<real>(0,1) )+ 
       (psi<real>(1,0) | propagator(x,0,1.10*f) | psi<real>(0,1) ) 
); 
   I = real ( 
       (psi<real>(0,1) | propagator(x,0,0.90*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,0.92*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,0.94*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,0.96*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,0.98*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,1.00*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,1.02*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,1.04*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,1.06*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,1.08*f) | psi<real>(0,1) )+ 
       (psi<real>(0,1) | propagator(x,0,1.10*f) | psi<real>(0,1) ) 
); 
   cout << x << " " << V << " " << I << endl                 ;} 
 
} 
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Performance 
 

� 71 log(N)            .............................. ns / sample  Cooley-Tukey<double> 
� 0.083 N0.79          .............................. ns / sample  FoxLima<double> 

 
on:      proc: x86_64 Intel Xeon E312xx Sandy Bridge @ 2.6 GHz 

           cache: 32k, 32k, 4096k 

           op-sys: Linux: 2.6.32-504.16.2.el6.x86_64 

           gcc: 4.4.7 20120313 (Red Hat 4.4.7-11) 
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Header file: #include ”fxl.hh“ 
 
Libraries: libfxl4.a   (static)                                     linux-2.6.32-504.12.2.el6.x86_64 
  libfxl4.so (dynamic)                                                    gcc-4.4.7 20120313 
 
 
Class ... fxl<T>  ................................. std. T =          double,      long double 
                                      cpx<double>, cpx<long double>  

                                                                     extra T = mtx<T> 
 
Member variables (public): 

� ddc / ddr   = T  ...................... pointers to Np long arrays of “imag” / "real" part 
[ 0 ... +F -F ...  0]            (for mtx<T> = A + iB, A,B self-adjoint) 

� fzc / fzr   = T  ...................... pointers to Np long arrays of “imag” / "real" part 
[-F ...   0   ... +F]            (for mtx<T> = A + iB, A,B self-adjoint) after  
                                                          the FoxLima filter 

� N     = int  .............................. # of Fourier bins = Np 
� p     = int  .............................. oversampling ratio 
� rms   = double  ........................ signal rms 

 
Constructor (public) 
fxl F(T*, T*, N,  q, str, ...) 
      ^   ^   ^   ^    ^    ^  

      |   |   |   |    |    |_ arg’s for the command (see below) 
      |   |   |   |    | 

      |   |   |   |    |_ command 
      |   |   |   | 

      |   |   |   |_ 2q FFT bins - allows oversampling, p = 2q / N, recommended q:  
      |   |   |                q > 3 + log(N) / log(2) 
      |   |   | 

      |   |   |_ # i/p samples 
      |   | 

      |   |_ pointer "real"-part (or vec of matrices, symmetrical part) 
      | 

      |_ pointer "imag"-part (or vec of matrices, anti-symmetrical part) 
 
 
command = "XX" , or "XX  raw" – with XX = F0, F1, F2, F4, F8, F16, GX, FC, FX, FE, FW 
  F0  = Cooley-Tukey,   -6dB/oct tails, p = 2q / N 

F1  = FoxLima-F1   ,   -6dB/oct tails, p = 2q / N 
F2  = FoxLima-F2   , -12dB/oct tails, p = 2q / N, similar to Welch  apodisation, 

 but w/ exact cancellation of 1 / (f-f0) tails 
F4  = FoxLima-F4   , -24dB/oct tails, p = 2q / N, suis-generis Welch-4 

 window,  but  w/  exact   cancellation   of 
 1 / (f-f0)

k tails (for k = 1, 2, 3) 
F8  = FoxLima-F8   , -48dB/oct tails, p = 2q / N, suis-generis Welch-8 window 
F16= FoxLima-F16 , -96dB/oct tail,   p = 2q / N, suis-generis Welch-16 
GX = Gaussian(sigma),                p = 2q / N, gaussian apodisation 

FC  = coherent chirp,                   p = 2q        with no windowing, σ size 

FX  = coherent chirp,                   p = 2q        with Gaussian(σ) window 

FE  = coherent chirp,                   p = 2q        with back-exp(τ)  window 

FW = coherent chirp,                   p = 2q        with Welch(σ)      window 



fxl                                                                                          C++ suite of FFT methods 

 

For the following: λ-3  p = # bins at which smooth function falls   -3 dB 

   λ-20 p = # bins at which smooth function falls -20 dB 

            condition:  1.472 < λ-20 / λ-3  < 4.684 

2f0 ∆t = f0 / FSR = chirp coherence-frequency  

σchirp  = chirp coherence-length # bins 
 
case F0, F1, F2, F4, F8, F16 raw  arg = void 

F0, F1, F2, F4, F8, F16 smooth arg = λ-3, λ-20 

GX raw    arg = σ 

FC raw    arg = 2f0 ∆t, σchirp   

FX raw     arg = 2f0 ∆t, σchirp   

FE raw     arg = 2f0 ∆t, τchirp   

FW raw    arg = 2f0 ∆t, σchirp   

GX smooth    arg = σ, λ-3, λ-20 

FC smooth    arg = 2f0 ∆t, σchirp , λ-3, λ-20 

FX smooth    arg = 2f0 ∆t, σchirp , λ-3, λ-20 

FE smooth    arg = 2f0 ∆t, τchirp , λ-3, λ-20 

FW smooth    arg = 2f0 ∆t, σchirp , λ-3, λ-20 
 
 
Parameters 

� fn   = (n-Np/2) / Np / T  .................... frequency of bin n 

� An = √(ddrn
2+ddcn

2)  / Np ................ amplitude of bin n (Cooley-Tukey) 

        √(fzrn
2 + fzcn

2)  / Np .................        - - ‘’ - -            (FoxLima) 
 
Resolution 

� df / f = 0.7 / int(f T)  …...................... frequency resolution 
� dA / A = from i/p  ............................ amplitude resolution 

 
 
Description 
 
    The fxl class is a suite of D-FFT methods. 
 
COHERENT SIGNALS 
 
    F0 – is the classic Cooley-Tukey algorithm. It receives N time bins and outputs 2q bins, 

where p = 2q / N is the (frequency)-oversampling ratio (recommended around x8). 
The oversampling solves the imprecision of Cooley-Tukey’s algorithm which for 
certain frequencies (periodically in the spectrum) has large errors, missing their 
peaks in: 

- frequency: δf < 1 / Np∆t, 

- amplitude: δA / A < 2p / π, 

- phase: δϕ < π / 2p. 
It is evident that for p = 1 the errors can be large. 
The Cooley-Tukey algorithm has -6 dB/oct fall-off spectrum leakage tails. For certain 
peaks, with f = n / T, this is not visible as the sampling occurs exactly at the position 
of the zero’s. For all else it is visible in various degrees. Metrologically, the 
favourable peaks do not represent the real performance of the algorithm. 
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    F1 – is a filter to the Cooley-Tukey algorithm. It solves the problem of the Gibbs satellite-

lobes, but has still the spectrum leakage tails, also -6 dB/oct fall-off. Its advantage is 
speed, requiring little CPU time. 

 
    F2 – is the best trade-off Cooley-Tukey filter, between thin peak width and Gibbs lobes’ 

suppression. It has a -12 dB/oct fall-off of spectrum leakage tails. Suppression is 
exact with respect to digitisation – in order k = 1 of the 1 / (f-f0)

k tails. It is loosely 
equivalent to Welch apodisation, however performed in frequency space rather than 
in temporal space. 

 
    F4 – has an advanced rejection of Gibbs lobes and -24 dB/oct fall-off of spectrum 

leakage tails. Suppression is exact with respect to digitisation – in orders k = 1, 2, 3 
of the 1 / (f-f0)

k tails. It is loosely equivalent to Welch-4 apodisation, however 
performed in frequency space rather than in temporal space. 

 
    F8 – has an advanced rejection of Gibbs lobes and -48 dB/oct fall-off of spectrum 

leakage tails. It is a Welch-8 apodisation, performed in temporal space. It is 
susceptible to spectrum distorsions due to inexact cancellations of digitisation terms 
when the signal has large phase noise, or it represents a short temporal sequence. 

 
    F16 – has an advanced rejection of Gibbs lobes and -96 dB/oct fall-off of spectrum 

leakage tails. It is a Welch-16 apodisation, performed in temporal space. It is 
susceptible to spectrum distorsions due to inexact cancellations of digitisation terms 
when the signal has large phase noise, or it represents a short temporal sequence. 

 
    GX – has an advanced rejection of Gibbs lobes and performant fall-off of spectrum 

leakage tails. It is a gaussian apodisation, performed in temporal space, of user 

given σ. 
 
NOISE SIGNALS 
 
    The signal below seems to have a well defined FFT peak in the spectrum, as being a 
single frequency. 

 
The problem however is that its second part is phased 180o behind the first. As such, when 
they are added, the FFT signal will be zero. 
 
    This may be mathematically correct, however engineering-wise unsatisfactory: there is a 
definite frequency in the spectrum, which needs to be flagged accordingly. 
 
    Similarly, certain sources emit “chirps”, of valid FFT-spectrum, however (usually) at 

random time intervals (same ∆ϕ/ω for all frequencies), and possibly also at various phase 
lags among frequencies. 
 
    For a given frequency the input sample can be divided into smaller samples and for each 
the FFT be computed. The results can be then summed as absolute values. For the 
frequency asked this will give the maximum amplitude attainable if all samples are 
coherent. 



fxl                                                                                          C++ suite of FFT methods 

 
    The problem is that this procedure has 
poor resolution. For any FFT the 
thinness of the peaks is given by the 

sum Σk=1,N-1 exp(2πi(ω-ω0)kT) which gives 
an “Airy”-function of frequency resolution 

δf = 1 / NT. 
 
    To overcome this, a phase-jump 
estimate at f0 is performed, then this is 
applied to all other frequencies. This 
should be adjusted for frequency drift, 
however for those around f0 it is 
sufficient (and other distant frequencies 
would have entailed too much noise from 
the extrapolation anyway). 
 
    This preserves the main mechanism 
of FFT computation, the summation of 

the above mentioned sum, and hence the resolution of signals – in spite of the small 

sample partition (and poor afferent σf apodisation). 
 

    FC – is without windowing of the smaller samples. User given σ and f0. 
 

    FX – is a gaussian apodisation of the smaller samples. User given σ and f0. 
 

    FE – is a back-exponential apodisation of the smaller samples. User given τ and f0. 
 

    FW – is a Welch apodisation of the smaller samples. User given σ and f0. 
 
 
Performance 
 
    The main advantages of the FoxLima suite are: 
 

1. exact signal metrics – due to the 
possibility to oversample in 
frequency-space, FoxLima algo-
rithms provide exact peak resolution 
over Cooley-Tukey, that can register 
errors of up to: 

o ∆f = 1 / 2N∆t in frequency 

o ∆A = 36% A in amplitude 

o ∆ϕ = 90o in phase  
 

These aspects can be seen in the 
figure above, and the figure to the 
right, where the sub-sampling 
problem of the Cooley-Tukey 
algorithm are evidentiated as peak 
truncation, or central-frequency 
imprecision. 
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2. exact leakage elimination – due to 
its Fourier-space apodisation, 
algorithms F1, F2 and F4 
eliminate exactly the 1 / (f-f0)

k 
spectrum-leakage tails for: 

o k = 0 (F1 algorithm) 
o k = 1 (F2 algorithm) and 
o k = 1,2,3 (F4 algorithm). 

 
The figure to the right shows 
smoothed versions of the 
algorithms for width and tail fall-
off. 
 
The 3 Fourier-space apodisation 
algorithms have fall-offs of: 

o -6 dB/oct (F1 algorithm) 
o -12 dB/oct (F2 algorithm) 
o -24 dB/oct (F4 algorithm). 

 
It is important to note, that time-
space apodisation does not take 
into account discretisation 
components exactly as does 
Fourier-space apodisation. 

 
    Therefore signals with phase-

noise, or a short time data-
acquisition window are not 
described as exact by time-space 
apodisation algorithms. 

 
This is shown in the figure here to 
the left – on a short time-window 
(of 6 x 50 Hz periods). 

 
The F8 algorithm has significant 
deviations beyond the central- 

peak, whereas F2 and F4 are both very precise. 
 
 

3. Weyl-Wigner FFT – as mentioned above, random-chirp signals may deceivingly add 
destructively showing little (or no signal at all) at certain frequencies. 
 
    The Weyl-Wigner algorithms add coherently such signals around a (user given) 

coherence frequency (f0), of sampling window (the approximate size of the chirp, σ).  
 
    A comparison with the F2 algorithm (on a noise signal) is given in the figure here 
below. 
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    A small presence in F2, with a 
large one in WW denotes 
significant cancellation (or phase 
noise). 
 

    The apodisation over the σ 
window is: 

o FC – plain Cooley-Tukey 
o FX – gaussian 
o FW – Welch 
o FE – back-exponential 

 
    The apodisation used in the 
figure here is gaussian. 


